Powertrain Topics

- Hybrid and adaptive Powertrain Technologies
- Alternative- and gaseous (mixed) fuels
- Exhaust after treatment
- Optimization of turbochargers and their parts

Contact:

Univ.-Prof. Dr.-Ing. Thomas BachmannDirector of the Automotive Engineering Department
Phone: +49 3677 69-3842

Mail: thomas.bachmann@tu-ilmenau.de

1. Testing Facilities

Engine Test Bench

AVL Dynospirit 370/4,5-8

Modern high dynamic engine test bench for a wide range of modern engines.

Specification:

Torque: MD=785 Nm
 Power: P=370 kW

· Rotational Speed:

n=8000 1/min

• Inertia: Θ=0,273 kg m²

· Measured Values:

p,T,P,M

• Indexing: AVL Indimodul

• Exhaust Measuring:

Gaseous Emissions AVL SESAM i60 FT

• Fuels: Gasoline, Diesel

Hot gas Test Benches

Hot gas test benches for turbocharger mapping, thermomechanical investigations and other several, possible investigations including components underlying a gaseous fluid flow.

Specification Test Bench 1:

Power: P=400 kW
 Massflow: m= 1500 kg/h
 Temp-Range: T=150-1100 °C

• Special: Capable of tThermoshocks

Specification Test Bench 2:

Power: P=200 kW
 Massflow: m=1000 kg/h
 Temp-Range: T=150-1100 °C

• Special: Capable of ClosedLoop

2. Measurement Systems

Measurement and Analysis Systems

Stationary Exhaust Measurement Device (AVL) SESAM i60 FT

Multi component exhaust gas measurement system for detailed determination of every single exhaust gas component.

Specification:

• Principle: Infrared spectroscopy

After treatment over Fourier Analysis

Sampling rate: 1HzReactional speed:

1Sek (t₁₀ to t₉₀)

· Measurable gases:

nitric oxide, alcohols, aldehyde, ammoniac, CO, CO2, CH4, SO2, formaldehyde, aromatic hydrocarbon,

pentane, octane

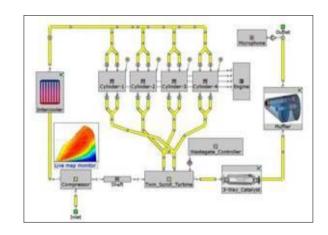
High-dynamic DC-Voltage source VES2 (Vehicle Energy System, Kratzer Automation)

DC Source for static and dynamic loading of electric engines and DC Drain for investigating battery like component behaving.

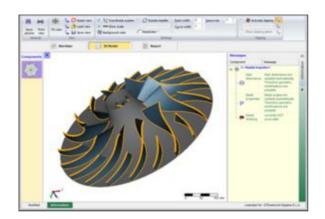
Specification:

• Power: P = 250 kW (340 PS)• Voltage Output: U = 40 - 800 V• Current Output: I = +/-0 - 700 A

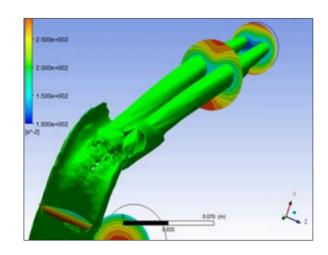
Voltage reactional speed: <400μs
 Current reaction speed: <400μs


2. Measurement Systems

Numerical Simulation


Engine Simulation

Over an1-D engine simulation tool (GT Power) for science and teaching.


Turbocharger Dimensioning

CFTurbo is used to construct and shape turbochargers as needet for scientific investigations and also for teching students

Computational Fluid Dynamics

With ANSYS CFX and FLUENT, our staff has the possibilities to investigate fluid streams in three dimensions.

2. Measurement Systems

Variable gas composition unit

- · engine test bench supply with gaseous fuels
- · gas mixtures generation with any composition

Specifications:

- gas components & maximum mass flow rate
 - methane (60 kg/h)
 - carbon dioxide (15 kg/h)
 - nitrogen (11 kg/h)
 - hydrogen (7 kg/h)
 - compressed natural gas (80 kg/h)
- gas pressure variable up to 16 bar
- 500 litres buffer tank for dynamic engine operation

